The iterability hierarchy above $${{\mathrm{\mathsf {I3}}}}$$ I 3

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solvent dependence of the electronic structure of I(-) and I3(-).

We present synchrotron-based I4d photoelectron spectroscopy experiments of solutions from LiI and LiI3 in water, ethanol, and acetonitrile. The experimentally determined solvent-induced binding energy shifts (SIBES) for the monatomic I(–) anion are compared to predictions from simple Born theory, PCM calculations, as well as multiconfigurational quantum chemical spectral calculations from geome...

متن کامل

Synthesis and structure of [Na4(DMSO)15][(I3)3(I)]. Self-assembly of hexacoordinated sodium.

A new complex with the molecular formula [Na(4)(DMSO)(15)][(I(3))(3)(I)] represents the first example of Na(+) coordinated solely by DMSO. The triiodide (I(3)(-)) and iodide (I(-)) anions form an infinite linear chain running throughout the crystal.

متن کامل

The self-iterability of L[E]

Let L[E] be an iterable tame extender model. We analyze to which extent L[E] knows fragments of its own iteration strategy. Specifically, we prove that inside L[E], for every cardinal κ which is not a limit of Woodin cardinals there is some cutpoint t < κ such that Jκ[E] is iterable above t with respect to iteration trees of length less than κ. As an application we show L[E] to be a model of th...

متن کامل

A criterion for coarse iterability

The main result of this paper is the following theorem: Let M be a premouse with a top extender, F . Suppose that (a) M is linearly coarsely iterable via hitting F and its images, and (b) if M∗ is a linear iterate of M as in (a), then M∗ is coarsely iterable with respect to iteration trees which do not use the top extender of M∗ and its images. Then M is coarsely iterable.

متن کامل

The Discrete Painlevé I Hierarchy

The discrete Painlevé I equation (dPI) is an integrable difference equation which has the classical first Painlevé equation (PI) as a continuum limit. dPI is believed to be integrable because it is the discrete isomonodromy condition for an associated (single-valued) linear problem. In this paper, we derive higher-order difference equations as isomonodromy conditions that are associated to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archive for Mathematical Logic

سال: 2018

ISSN: 0933-5846,1432-0665

DOI: 10.1007/s00153-018-0624-5